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Abstract. A new effect of self-consistency in the relativistic Hartree-Fock (HF) approximation is studied by
a simple model and a renormalized calculation. A comparison is made between two different HF schemes:
one requiring self-consistency in the HF potential (scheme P) and the other in the baryon propagator
(scheme BP). Our results show that scheme P is a good aproximation to scheme BP for the calculation
of the baryon propagator and the self-consistency requirements make the results obtained by the two
schemes closer to each other, because the self-consistency in scheme BP diminishes the continuum part
of the spectral representation for the baryon propagator, while the self-consistency in scheme P yields
a baryon propagator which approximates closely to the HF result contributed by the converged single
particle part of the above spectral representation alone.

PACS. 21.65.+f Nuclear matter – 21.60.Jz Hartree-Fock and random-phase approximations – 11.10.Gh
Renormalization

Not only the relativistic Hartree-Fock (HF) [1] but also
the relativistic Brueckner-HF [2] theory has been studied
intensively in recent years. The aim of this note is some-
what different. We would like to compare two different rel-
ativistic self-consistent (SC) HF schemes and to study a
new effect of self-consistency (i.e. besides its relation with
the energy variational principle) by a renormalized calcu-
lation. For simplicity we shall consider a system composed
of baryons coupling only with scalar mesons and the case
of zero-density. The baryon tadpole self-energy is then zero
and there is no distinction between the HF and the Fock
approximation, though we shall still use the term HF. The
baryon propagator can be written as

GHF (k) = − [γµkµ − iM + ΣxHF (k)]−1

= G0(k) +G0(k)ΣxHF (k)GHF (k),
(1a)

G0(k) = − [γµkµ − iM ]−1
, (1b)

where kµ = (k, k4 = ik0) and the renormalized HF ex-
change self-energy can be expressed in the form:

ΣxHF (k) = −g2
s

∫
dτq

(2π)4
G(q)∆0(k − q) + ΣxCTC(k) (2)

with τ = 4− ε(ε→ 0+) and CTC denoting the countert-
erm correction. Substituting GHF (q) for G(q) in (2), one
gets

ΣxHF (k) = g2
s

∫
dτq

(2π)4
· ∆0(k − q)
γµkµ − iM + ΣxHF (q)

+ ΣxCTC(k),

(3)

which is the SC equation considered by Bielajew and Serot
[3] (see also [4]). It will be referred to as the semifully
SC scheme or simply as scheme BP, since ∆0(k − q) =

−i
[
(k − q)2 +m2

s − iε
]−1

is still the free meson propaga-
tor. From (1) one obtains the following eigenvalue equa-
tion

[γµkµ − iM + ΣxHF (k)]k0=Ek
u(ks) = 0, (4)

where Ek and u(ks) are the eigenvalue and eigenspinor,
respectively. Let the zero-order approximation to GHF (k)
constructed by means of (4) be denoted by G0

Σ(k). We
have

G0
Σ(k) = − [γµkµ − iM + ΣxHF (k, Ek)]−1

, (5)

GHF (k) = G0
Σ(k)+G0

Σ(k) [ΣxHF (k)−ΣxHF (k, Ek)]GHF (k),
(6)

where ΣxHF (k, Ek) represents ΣxHF (k) at k0 = Ek. It has
been conjectured in the HF theory [5] that G0

Σ(k) ≈
GHF (k). Hence it may be a good approximation to (3)
if one substitutes G0

Σ(q) for G(q) in (2), from which one
obtains

ΣxHF (k) = Ztg
2
s

∫
dτq

(2π)4
· ∆0(k − q)
γµkµ − iM + ΣxHF (q, Eq)

+ ΣxCTC(k),
(7)

with Zt = 1. It is referred to as the potential scheme [6]
or scheme P , since if one sets k0 = Ek in (7), one gets
a SC equation for ΣxHF (k, Ek). From the stipulation that
∆G(k) = G(k) − G0

Σ(k) should be small and the single
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particle (sp) potential instantaneous, i.e. independent of
k0, one easily concludes that G0

Σ(k) and G(k) should have
the same real pole (C1) and the same residue (−Zt) at
the pole (C2). Clearly G0

Σ(k) satisfies (C1). Following the
notation used in [7], we shall denote the pole of G(k) by
γµkµ = iMt. Σx(k) can be written as [3]

Σx(k) = γµkµa(k2)− iMb(k2). (8)

One easily finds that Zt can be written in the form

Zt =
[
1 +

∂Σx

∂ (γµkµ)
(γµkµ = iMt)

]−1

, (9a)

∂Σx

∂ (γµkµ)
(γµkµ = iMt) = a

(
−M2

t

)
− 2M2

t a
′ (−M2

t

)
+2MMtb

′ (−M2
t

)
,

(9b)

where f ′(k2) = df
dk2 . From (4) one gets that the root Mt

is determined by

M2
[
1 + b

(
−M2

t

)]2 −M2
t

[
1 + a

(
−M2

t

)]2
= 0, (10)

and E2
k = k2 + M2

t [6]. If Zt 6= 1, ZtG0
Σ(k) should be

a better approximation to GHF (k) than G0
Σ(k). Thus we

have added the factor Zt to (7). We shall use a tilde and
a caret to indicate the results obtained from (3) and (7),
respectively. Since in the case of zero-density (3) and (7)
can be solved rigorously, it is advantageous to use this
fact to make a preliminary study of the relation between
different approximations and the effect of self-consistency.

To fix ΣxCTC(k) we shall consider the intermediate
renormalization conditions [7], which read

Σx(k)
∣∣∣∣kµ=0 = 0;

∂Σx(k)
∂ (γµkµ)

∣∣∣∣
kµ=0

= 0. (11)

The solutions to (3) and (7) with Zt = 1 have been
given in [6]. According to [6], G0

Σ(k) can be written as

G0
Σ(k) = − [γµkµ − iMt]

−1
, (12)

where Mt may be interpreted as the true baryon mass
and M is then determined by (10). As is wellknown [7], a
properly normalized spectral representation for the baryon
propagator can be written as

GnHF = −Z2
γµkµ + iMt

k2 +M2
t − iε

−
∫ ∞
m2

1

dm2 γµkµα
(
−m2, Z2

)
+ iMtβ

(
−m2, Z2

)
k2 +m2 − iε ,

(13)
where m1 = Mt +ms and Z2 satisfies

Z2 +
∫ ∞
m2

1

dm2α(−m2, Z2) = 1. (14)

Between GnHF and GHF in (1a) we should write GnHF =
ZGHF , Z being a proportional factor. Since the residues

at the pole γµkµ = iMt must be the same, we get Z2 =
ZZt with Zt given by (9). (1) implies that one should
substitue GHF = Z−1GnHF in (2). Let γ denote α or β.
Set γ(−m2) = Z−1γ

(
−m2, Z2

)
. As shown in [6], inserting

(8) and (13) in (2) and using (11), one finds in scheme BP

ã(k2) = − g2
s

16π2

∫ ∞
0

dm2

∫ 1

0

dxfα
(
−m2

)
·x ln

K2
(
x,m2, k2

)
K2 (x,m2, 0)

,

(15a)

b̃(k2) =
g2
s

16π2

[
Mt

M̃

] ∫ ∞
0

dm2

∫ 1

0

dxfβ
(
−m2

)
· ln

K2
(
x,m2, k2

)
K2 (x,m2, 0)

,

(15b)

fγ(−m2) = Z̃tδ
(
m2 −M2

t

)
+θ
(
m2 −m2

1

)
γ̃
(
−m2

)
,

(15c)

K2
(
x,m2, k2

)
= (1− x)m2 + xm2

s + x (1− x) k2, (15d)

where θ denotes the step function. By means of GHF =
Z−1GnHF and the fact that the spectral weight functions α
and β should be real, one can derive the following relations
[8]:

α
(
k2
)

=
1
π
Im

1 + a(k2)
D(k2)

, (16a)

β
(
k2
)

=
M

πMt
Im

1 + b(k2)
D(k2)

, (16b)

D
(
k2
)

= k2
(
1 + a

(
k2
))2

+M2
(
1 + b

(
k2
))2

. (16c)

It is clear that (16) applies to both schemes BP and P.
We note that Z2 in (18c) of [6] should read Zt = Z−1Z2.
In scheme BP the set of equations (15), (16), (9) and (10)
must be solved self-consistently. They have been solved
by iteration. If the on-shell renormalization conditions are
used, Zt is equal to 1. Thus it is in this aspect simpler.
Bielajew [8] has calculated the spectral weight functions
of this case numerically. For comparison we shall use his
parameter values g2

s

16π2 ≡ g2
s = 0.6517, msMt

= 0.5538 and

Mt = 4.7585fm−1. The numerical results of
(
ã, b̃
)

and(
α̃, β̃

)
are drawn in Figs. 1 and 2. In Fig. 1 the subscript

r(i) indicates the real (imaginary) part. Note that Z2 =
ZZt can be calculated by (14). The values of Z̃t, Z̃2 and(
Mt

M̃

)
will be given below. Substituting (12) in (7) and

employing (11), we obtain in scheme P [6]

â(k2) = ẐtA(k2); b̂(k2) = Ẑt

(
Mt

M̂

)
B(k2), (17a)

A(k2) = −g2
s

∫ 1

0

dx
[
x lnL

(
x, k2

)]
;

B(k2) = g2
s

∫ 1

0

dx lnL
(
x, k2

)
,

(17b)
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Fig. 1. Numerical results of (a,b). (a) the real part, (b) the
imaginary part. The tilde indicates scheme BP, while the caret
scheme P. The dotted curves are obtained by taking Zt = 1 in
(7)

Fig. 2. The spectral weight functions α
(
−m2

)
and β

(
−m2

)
.

The tilde for scheme BP, while the caret for scheme P

L
(
x, k2

)
=
[
(1− x)M2

t + xm2
s + x (1− x) k2

]
·
[
(1− x)M2

t + xm2
s

]−1 (17c)

where Ẑt and M̂ are given by (9) and (10), respectively.
Both Ẑt and M̂ depend on â and b̂. However, the depen-
dence occurs only at a single point k2 = −M2

t . Thus (17a)
can be solved easily without even using an iteration proce-
dure. We note that A(k2) and B(k2) are known functions
of k2, because Mt denotes the true baryon mass. Thus the
righthand sides (RHSs) of (17a) will be known, if â

(
−M2

t

)
and b̂

(
−M2

t

)
are known. Setting k2 = −M2

t in (17a) and

using (9) and (10), we obtain

â
(
−M2

t

)
= 2−1

(
−Y +

[
Y 2 + 4Y A

(
−M2

t

)] 1
2
)
, (18a)

Y = A
(
−M2

t

) {
A
(
−M2

t

)
+ 2M2

t

·
[
B′
(
−M2

t

)
−A′

(
−M2

t

)]}−1
,

(18b)

b̂
(
−M2

t

)
= â

(
−M2

t

)
B
(
−M2

t

) {
A
(
−M2

t

)
+ â

(
−M2

t

)
·
[
A
(
−M2

t

)
−B

(
−M2

t

)]}−1
.

(18c)
The above demonstrates that scheme P is much sim-

pler than scheme BP. If we have set Zt = 1 in (7) and
(17a), then â(k2) = A(k2) is known and (18c) reduces to

b̂
(
−M2

t

)
=B

(
−M2

t

) [
1+A

(
−M2

t

)
−B

(
−M2

t

)]−1
. (19)

We shall use an additional subscript 1 to indicate this
case and refer to it as Ca1. For comparison

(
â, b̂
)

and(
â1, b̂1

)
are also plotted in Fig. 1. The converged values

of Zt and Mt

M are as follows: Z̃t = 0.6083, Ẑt = 0.6248 and
Ẑ1t = 0.5099, while Mt

M̃
= 0.8131, Mt

M̂
= 0.8261 and Mt

M̂1
=

0.7048. It is seen that â1

(
b̂1

)
differs widely from ã

(
b̃
)

and Ẑ1t

(
Mt

M̂1

)
is also a poorer approximation to Z̃t

(
Mt

M̃

)
than Ẑt

(
Mt

M̂

)
. The difference between Cal and (17a) lies

only in the fact that in Cal Zt is not included in the SC
requirement. The above results show that it is important
to substitute ZtG

0
Σ(k) for G0

Σ(k) if Zt is not close to 1
and the self-consistency makes scheme P and scheme BP
closer to each other. We shall no longer consider Cal. The
region k2 > (<) − m2

1 will be designated by I (II). In
region I

(
ã, b̃
)

and
(
â, b̂
)

are real and they are almost
the same. They become complex in region II and are still
close to each other for k2 > −120 (fm−2). However, their
difference becomes larger and larger hereafter. To study
the significance of this behavior, let us consider

F (±) ≡ 〈iG(k)〉± = u+
±(ks)iG(k)u±(ks), (20)

where + (−) refers to the eigenspinor of (4) with eigen-

value + (−)Ek =
[
M2
t + k2

] 1
2 . From (1), (4) and (8) we

find

F (±) =
1 + a

(
k2
)

D (k2)

[
1 + b

(
k2
)

1 + a (k2)
M ± Mt

Ek
k0

]
. (21)

For simplicity only F0 = 〈iG0
Σ(k)〉+, F̃r =

Re
〈
iG̃HF (k)

〉
+

and F̂r = Re
〈
iĜHF (k)

〉
+

are depicted

in Fig. 3, where k0 = 10
√

2(fm−1) is chosen as an ex-
ample. One observes that F̂r and F̃r are very close to
each other. It shows that the difference between

(
â, b̂
)

and
(
ã, b̃
)

at larger
∣∣k2
∣∣ will not cause significant effects
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Fig. 3. Graphical representations for F (+) = 〈iG (k)〉+, where

F0 = 〈iG0
Σ (k)〉+ (dotted curves), F̃r = Re〈iG̃HF (k)〉+,

F̂r = Re
〈
iĜHF (k)

〉
+

and F̃R = Re
〈
iG̃HF (k, R)

〉
+

. With-

out greatly enlarging the scale, F̃r, F̂r and F̃R are almost in-
distinguishable

on GHF , because both ĜHF and G̃HF become very small
there. Hence, for the calculation of GHF one may regard(
â, b̂
)

as a good substitute for
(
ã, b̃
)

. In Fig. 3 we have

also plotted F̃R =
〈
iG̃HF (k;R)

〉
+

obtained in the quasi-

particle approximation [9], where R indicates that ai and
bi are neglected. From (21) we have

Fr = ReF

=
[
D2
r +D2

i

]−1{Dr

[
M(1 + br) + E−1

k Mtk0(1 + ar)
]

+Di

[
Mbi + E−1

k Mtk0ai
]
}, (22a)

FR = D−1
R

{
M(1 + br) + E−1

k Mtk0(1 + ar)
}
, (22b)

Dr = ReD = DR −
(
k2a2

i +M2b2i
)
, (23a)

DR = k2(1 + ar)2 +M2(1 + br)2, (23b)

Di = ImD = k22ai(1 + ar) +M22bi(1 + br). (23c)

Clearly FR and Fr as well as DR and D are the same
in region I, because there ai = bi = 0. In region II the
root structure of DR and D may be different. Let MR

denote the smallest real root of DR which does not be-
long to D. From (22) it is seen that FR will deviate from
Fr widely if k2 . −M2

R. Thus MR may serve as a crude
criterion in this aspect. In our special example we have
found that both DR and D have no real roots in region
II and F̃R and F̃r are very close to each other, i.e. the
quasiparticle approximation is quite good in this case. We
have also calculated the case k0 = 10(fm−1). The rela-
tions obtained for F0, F̂r, F̃r and F̃R are nearly the same
as shown in Fig.3. By means of (16) we may calculate(
α̂, β̂

)
. The numerical results are shown in Fig.2. Since

Ẑt ' Z̃t and Mt

M̂
' Mt

M̃
, (17a) is almost the same as the sp

part in (15) obtained by setting α̃
(
−m2

)
= β̃

(
−m2

)
= 0.

The set (α, β) calculated with (a, b) obtained by this sp
part has not been depicted in Fig.2, because it almost
coincides with

(
α̂, β̂

)
and may well be represented by

the latter. Though both β̃ and β̂ are positive, we have
checked numerically that for each set (α, β) the relation
mα

(
−m2

)
−Mtβ

(
−m2

)
≥ 0 [7] holds well for m ≥ m1.

Let us choose Z̃t, Mt

M̃
and α̃

(
−m2

)
= β̃

(
−m2

)
= 0 as the

initital input and solve the set of SC equations in scheme
BP iteratively. From Fig.2 one observes that the itera-
tion process changes (α, β) from

(
α̂, β̂

)
to
(
α̃, β̃

)
, while

keeps the sp part unchanged, because we have used the
converged values of Zt, Mt

M as our input. This asserts that
the effect of self-consistency is to diminish the continuum
part of the spectral representation in (13) and make its sp
part more important. Using (14) and the results:∫ ∞

m2
1

dm2â
(
−m2

)
= 0.6128;∫ ∞

m2
1

dm2ã
(
−m2

)
= 0.4643,

(24)

we get Ẑ2 = 0.5048 and Z̃2 = 0.5671. It shows that Z2

is indeed increased through diminishing α
(
−m2

)
. Fig.9

in [8] indicates that the difference between
(
α̂, β̂

)
and(

α̃, β̃
)

is larger in the case of the on-shell renormaliza-
tion.Thus the above effect will be more distinct in this
case, which will be discussed in some detail elsewhere.
From Fig.2 one notes that α̃

(
−m2

)
and β̃

(
−m2

)
are very

small. This is also one of the reasons why the contribution
of the continuum part is insignificant and scheme P is a
good approximation to scheme BP for the calculation of
the baryon propagator. However we must remark that for
the calculation of (α, β) scheme P may not be regarded
as an equally good approximation to scheme BP, espe-
cially if the effect is accumulative, as can be seen from
(24) and Fig.2. In this note we have only discussed a sim-
ple and special case. The question whether the conclusions
reached are valid generally has still to be studied. A fuller
report and a more detailed discussion of our findings for
the σ − ω model will be presented in a succeeding paper.
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